Top 100 Most Popular Boy Baby Names by Pronunciation in the US 2004 - Combined Name Rankings

About Distortion Index

The Distortion Index shows how much the ranking might be skewed by alternative spellings of the same pronunciation. A higher index (closer to 1.0) means the main name represents a smaller portion of the total, indicating the ranking could be misleading. A lower index (closer to 0.0) means the main name dominates, making the ranking more accurate.

Low Distortion (0.07): Jayden (1,000) + Zayden (50) + Jaden (30) = Main name dominates
High Distortion (0.91): Jayden (100) + Zayden (800) + Jaden (200) = Alternative spellings dominate
Distortion Index Color Guide:
0.0-0.29 Low Distortion (Green) - Main name dominates
0.3-0.69 Medium Distortion (Orange) - Moderate alternative spellings
0.7-1.0 High Distortion (Red) - Alternative spellings dominate
Rank Adjustment Explanation:

Adjusted Rank: The primary rank shown reflects the combined count of all similar pronunciation names, providing a more accurate representation of the name's true popularity. Original Rank: The rank in parentheses shows the original ranking based on the main name only, before grouping similar pronunciations.

Rank Change Indicators:
📈 Rank improved (moved up)
📉 Rank declined (moved down)
➡️ Rank unchanged

Advanced Pronunciation Algorithm

We've developed a revolutionary pronunciation comparison algorithm that intelligently groups baby names with similar sounds and pronunciations. Our sophisticated system automatically corrects common typos and misspellings, ensuring accurate name grouping based on phonetic similarity rather than just spelling.

This cutting-edge algorithm uses advanced phonetic analysis to identify names that sound alike but may have different spellings, providing you with the most comprehensive and accurate baby name rankings by pronunciation. 💡 Understanding the Distortion Index is crucial for interpreting these results accurately. While our algorithm is highly accurate, if you notice any grouping errors, please let us know and we'll promptly resolve them.

🔍 Intelligent phonetic analysis and grouping
✏️ Automatic typo correction and misspelling detection
🎯 Accurate pronunciation-based name categorization

Boy Names

Ranking Name Distortion Index Count
1 ➡️
(Org: 1)
(28,115)
0.01 28,115
2 ➡️
(Org: 2)
(26,444)
0.04 26,444
3 ➡️
(Org: 3)
(24,370)
0.01 24,370
4 ➡️
(Org: 4)
(23,988)
0.05 23,988
5 📈
(Org: 13)
(23,599)
0.22 23,599
6 📉
(Org: 5)
(22,323)
0.01 22,323
7 📈
(Org: 20)
(21,735)
0.33 21,735
8 📉
(Org: 6)
(21,714)
- 21,714
9 📈
(Org: 10)
(21,347)
0.08 21,347
10 📉
(Org: 7)
(21,176)
0.01 21,176
11 📉
(Org: 9)
(20,277)
0.01 20,277
12 📉
(Org: 8)
(20,259)
0 20,259
13 📉
(Org: 11)
(19,620)
0 19,620
14 📉
(Org: 12)
(19,601)
0.01 19,601
15 📉
(Org: 14)
(18,407)
- 18,407
16 📉
(Org: 15)
(17,968)
0 17,968
17 📉
(Org: 16)
(17,700)
0.01 17,700
18 📈
(Org: 21)
(17,608)
0.18 17,608
19 📉
(Org: 18)
(17,175)
0.04 17,175
20 📉
(Org: 19)
(16,989)
0.13 16,989
21 📉
(Org: 17)
(16,520)
0 16,520
22 📈
(Org: 26)
(15,923)
0.14 15,923
23 📈
(Org: 59)
(15,102)
0.51 15,102
24 📉
(Org: 22)
(14,863)
0.05 14,863
25 📈
(Org: 33)
(14,752)
0.23 14,752
26 📈
(Org: 62)
(14,589)
0.53 14,589
27 📉
(Org: 23)
(14,248)
0.01 14,248
28 📈
(Org: 38)
(14,153)
0.29 14,153
29 📉
(Org: 25)
(13,945)
0.01 13,945
30 📉
(Org: 24)
(13,925)
- 13,925
31 📉
(Org: 27)
(13,223)
0.01 13,223
32 📉
(Org: 28)
(12,187)
- 12,187
33 📉
(Org: 30)
(12,119)
0.02 12,119
34 📉
(Org: 29)
(11,973)
0.01 11,973
35 📉
(Org: 31)
(11,920)
0.02 11,920
36 📈
(Org: 61)
(11,780)
0.39 11,780
37 📉
(Org: 32)
(11,746)
0.02 11,746
38 📉
(Org: 34)
(11,483)
0.02 11,483
39 📉
(Org: 37)
(11,032)
0.05 11,032
40 📉
(Org: 35)
(10,911)
0.02 10,911
41 📈
(Org: 48)
(10,832)
0.17 10,832
42 📉
(Org: 36)
(10,681)
- 10,681
43 📈
(Org: 104)
(10,623)
0.61 10,623
44 📈
(Org: 46)
(10,290)
0.11 10,290
45 📈
(Org: 47)
(10,226)
0.11 10,226
46 📉
(Org: 43)
(10,215)
0.06 10,215
47 📉
(Org: 45)
(10,071)
0.08 10,071
48 📈
(Org: 50)
(10,048)
0.12 10,048
49 📉
(Org: 39)
(10,007)
0 10,007
50 📈
(Org: 64)
(9,904)
0.32 9,904
51 📉
(Org: 42)
(9,896)
0.03 9,896
52 📉
(Org: 40)
(9,824)
- 9,824
53 📉
(Org: 41)
(9,751)
0.02 9,751
54 📉
(Org: 44)
(9,528)
0 9,528
55 📈
(Org: 60)
(9,403)
0.24 9,403
56 📉
(Org: 49)
(8,902)
- 8,902
57 📉
(Org: 51)
(8,852)
0.03 8,852
58 📉
(Org: 53)
(8,847)
0.05 8,847
59 📈
(Org: 107)
(8,769)
0.54 8,769
60 📉
(Org: 52)
(8,639)
0 8,639
61 📈
(Org: 85)
(8,486)
0.4 8,486
62 📈
(Org: 78)
(8,215)
0.35 8,215
63 📉
(Org: 54)
(8,131)
- 8,131
64 📈
(Org: 66)
(7,882)
0.15 7,882
65 📉
(Org: 55)
(7,863)
0 7,863
66 📉
(Org: 57)
(7,832)
0.04 7,832
67 📉
(Org: 56)
(7,652)
- 7,652
68 📉
(Org: 58)
(7,490)
0 7,490
69 ➡️
(Org: 69)
(7,025)
0.07 7,025
70 📉
(Org: 63)
(6,843)
0 6,843
71 📈
(Org: 91)
(6,833)
0.29 6,833
72 📉
(Org: 67)
(6,707)
- 6,707
73 📉
(Org: 70)
(6,471)
- 6,471
74 📈
(Org: 86)
(6,392)
0.21 6,392
75 📉
(Org: 71)
(6,260)
- 6,260
76 📉
(Org: 72)
(6,140)
- 6,140
77 📉
(Org: 75)
(6,096)
0.07 6,096
78 📈
(Org: 84)
(6,035)
0.15 6,035
79 📉
(Org: 73)
(5,887)
0 5,887
80 📉
(Org: 74)
(5,789)
0.02 5,789
81 📈
(Org: 87)
(5,559)
0.1 5,559
82 📉
(Org: 81)
(5,498)
0.06 5,498
83 📈
(Org: 94)
(5,497)
0.13 5,497
84 📉
(Org: 76)
(5,442)
0 5,442
85 📉
(Org: 82)
(5,385)
0.04 5,385
86 📉
(Org: 77)
(5,381)
- 5,381
87 📉
(Org: 79)
(5,233)
- 5,233
88 📉
(Org: 80)
(5,188)
- 5,188
89 ➡️
(Org: 89)
(5,152)
0.03 5,152
90 ➡️
(Org: 90)
(5,026)
0.01 5,026
91 📉
(Org: 88)
(5,023)
0 5,023
92 📈
(Org: 93)
(4,872)
0.01 4,872
93 📉
(Org: 92)
(4,848)
- 4,848
94 📈
(Org: 101)
(4,785)
0.08 4,785
95 ➡️
(Org: 95)
(4,725)
0.01 4,725
96 📈
(Org: 113)
(4,686)
0.2 4,686
97 ➡️
(Org: 97)
(4,564)
0.01 4,564
98 📉
(Org: 96)
(4,556)
0.01 4,556
99 📈
(Org: 106)
(4,537)
0.09 4,537
100 📈
(Org: 160)
(4,534)
0.44 4,534